Analytic continuation of weighted Bergman kernels
نویسندگان
چکیده
منابع مشابه
Weighted Bergman kernels on orbifolds
We describe a notion of ampleness for line bundles on orbifolds with cyclic quotient singularities that is related to embeddings in weighted projective space, and prove a global asymptotic expansion for a weighted Bergman kernel associated to such a line bundle.
متن کاملWeighted Bergman Kernels and Quantization
Let Ω be a bounded pseudoconvex domain in C N , φ, ψ two positive functions on Ω such that − logψ,− log φ are plurisubharmonic, z ∈ Ω a point at which − log φ is smooth and strictly plurisubharmonic, and M a nonnegative integer. We show that as k → ∞, the Bergman kernels with respect to the weights φkψM have an asymptotic expansion KφkψM (x, y) = kN πNφ(x, y)kψ(x, y)M ∞ ∑ j=0 bj(x, y) k −j , b0...
متن کاملToeplitz Operators and Weighted Bergman Kernels
For a smoothly bounded strictly pseudoconvex domain, we describe the boundary singularity of weighted Bergman kernels with respect to weights behaving like a power (possibly fractional) of a defining function, and, more generally, of the reproducing kernels of Sobolev spaces of holomorphic functions of any real order. This generalizes the classical result of Fefferman for the unweighted Bergman...
متن کاملMultiplication Operators on the Bergman Space via Analytic Continuation
ABSTRACT. In this paper, using the group-like property of local inverses of a finite Blaschke product φ, we will show that the largest C-algebra in the commutant of the multiplication operator Mφ by φ on the Bergman space is finite dimensional, and its dimension equals the number of connected components of the Riemann surface of φ ◦ φ over the unit disk. If the order of the Blaschke product φ i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal de Mathématiques Pures et Appliquées
سال: 2010
ISSN: 0021-7824
DOI: 10.1016/j.matpur.2010.08.004